Alcohol graso: uno de los miembros principales de los tensioactivos
May 31, 2023Fatty alcohol is aliphatic alcohol with 8 to 22 carbon atomic chains. Fatty alcohol usually has an even number of carbon atoms and a hydroxyl group attached to the end of the carbon chain.
One of the raw materials of surfactants used in detergents. The general formula is ROH.The R of alcohol used in detergent is usually a hydrocarbon group of C12~C18. The high carbon fatty alcohologen is amphiphilic, that is, there are hydrophobic groups such as hydrocarbon chains, and there are hydrophilic groups such as hydroxyl groups.
Due to the low solubility in water, it is necessary to add hydrophilic groups or convert hydroxyl groups into sulfate groups to achieve the necessary hydrophilic-oil equilibrium value.When fatty alcohol derivatives have sufficient hydrophilic groups to dissolve in water and form aggregates (micelles), they are surfactants.For example, dodecanol is insoluble in water, but when it becomes sodium dodecanol sulfate, due to the addition of a sulfate group (- SO3-), its water solubility becomes better and it can form micelles in water. When a certain concentration is reached, it shows very good surface activity. People have utilized this characteristic to produce a variety of surfactants with various excellent properties using fatty alcohols as raw materials.
The Development Process of Fatty Alcohol
Fatty alcohols the earliest anionic detergents which prepared from whale wax, and the resulting mixed fatty alcohols were sulfonated and neutralized to form sulfates. Subsequently, coconut oil, palm oil, and butter with abundant sources were developed and utilized as raw materials. The fatty acids obtained from hydrolysis are reduced to alcohols. Commonly referred to natural fatty alcohols.After the development of petrochemical industry, fatty alcohols produced from petroleum products are called synthetic fatty alcohols. High pressure hydrogenation, Ziegler process and carbonyl synthesis are important methods to produce fatty alcohols. If the hair mask contains unsaturated fatty alcohol, can repair and nourish hair. Adding fatty alcohol to lip gloss can enhance the smoothness of the product during use.
Production Methods of Fatty Alcohol
1. High-pressure hydrogenation method
Fatty alcohol was obtained from animal and plant oils by high-pressure hydrogenation. In industry, the raw oil is first pretreated, alcohololysis (i.e. transesterification) into fatty acids and then hydrogenated.Fatty acids can also be hydrogenated directly or esterified to produce alcohols. Direct hydrogenation of fatty acids to fatty alcohols requires high material quality. The chemical equation of fatty acid hydrogenation to fatty alcohol is as follows: RCOOH+2H2 -- →RCH2OH+H2O. The chemical equation of fatty acid ester hydrogenation to fatty alcohol is as follows: RCOOR '+2H2 -- →RCH2OH+R' OH. High-pressure hydrogenation method has fixed bed method and suspended bed method, but its basic process flow is the same.
2. Ziegler method
Using ethylene as raw material and the action of trialkylaluminum, aluminum alcohol compounds can be prepared through chain growth and oxidation. Afterwards, aluminum alcohol compounds are hydrolyzed, neutralized, and fractionated to obtain fatty alcohols. This method was created by K. Ziegler in 1954, and was first put into production by the Continental Oil Company in 1962. The product is a straight-chain dicarbon alcohol. The main reactions of this production method include the following steps:
Preparation of triethyl aluminum (hydrogenation and addition reaction):
Al+H2+2Al (C2H5) 3- → 3Al (C2H5) 2H
3Al (C2H5) 2H+3C2H4- → 3Al (C2H5) 3
Preparation of alkyl aluminum (chain growth reaction):
Al (C2H5) 3+3nC2H4- → R3Al
Preparation of aluminum alkoxide (oxidation reaction):
R3Al+O2- → Al (OR) 3
Fatty alcohol production (hydrolysis reaction):
Al (OR) 3+H2SO4- → Al2 (SO4) 3+3ROH or
Al (OR) 3+H2O - → Al2O3+3ROH
3. Carbonyl synthesis method
Aldehydes are synthesized from olefins, carbon monoxide, and hydrogen under catalyst and pressure conditions. Aldehydes have one more carbon atom than raw olefins. Aldehydes are hydrogenated to produce fatty alcohols. The aldehyde reaction (OXO reaction) of olefin was discovered by German chemist O. Leren in 1938.
The OXO reaction is as follows:
Aldehyde reaction (formaldehyde or hydroformylation)
Application and Market Development of Fatty Alcohol Products
Natural higher fatty alcohol is the basic raw material of fine chemical products such as detergents, surfactants, plasticizers, etc. There are thousands of fine chemical products produced from it, which are widely used in chemical industry, petroleum, metallurgy, textile, machinery , mining, construction, plastics, rubber, leather, paper, transportation, food, medicine and health, daily chemicals and agriculture.
Many derivatives can be produced from fatty alcohols. Los tensioactivos de la serie de alcohol son los productos de más rápido desarrollo entre varios tensioactivos desde la década de 1980. Como sustancia activa detergente, tiene excelentes propiedades, como una fuerte capacidad de descontaminación, buena compatibilidad, baja formación de espuma, fácil biodegradación, resistencia al agua dura y buen rendimiento de lavado con agua a baja temperatura. Ha ido reemplazando gradualmente al sulfonato de alquilbenceno lineal (LAS) y al sulfonato de dodecilbenceno como la tercera generación de materias primas para detergentes. Las variedades más representativas aquí son AEO3~9 sintetizadas a partir de alcoholes grasos y óxido de etileno, que también pueden sulfonarse para generar AES. Estos alcoholes son tensioactivos con amplias aplicaciones y alta demanda, y están íntimamente relacionados con la mejora de la vida diaria. Los mercados reales y potenciales son amplios,
Los aditivos plásticos son materias primas auxiliares para la industria del plástico, y la industria de aditivos se ha desarrollado con el desarrollo de la industria del plástico. El rápido desarrollo de la industria plástica de China es bien conocido. En 1985, el mundo consumió 13 millones de toneladas de diversos aditivos plásticos y los plastificantes fueron uno de los aditivos plásticos más utilizados. Actualmente, la capacidad de producción de plastificantes en el extranjero ha superado los 4,5 millones de toneladas, y la capacidad de producción de plastificantes de China ha superado las 500 000 toneladas.
Entre los plastificantes, la producción de ftalato de dibutilo (DBP) y ftalato de dioctilo (DOP) juega un papel importante. Además de las materias primas del anhídrido ftálico, el butanol y el octanol también son las principales materias primas en la producción. En la actualidad, en China se consumen cada año más de 300.000 toneladas de butanol y octanol para producir estos dos plastificantes. Sin embargo, las cadenas de carbono del butanol y octanol son relativamente cortas, y los plastificantes producidos por ellos están lejos de satisfacer las necesidades de desarrollo de la industria de procesamiento de plásticos en términos de resistencia al calor, resistencia a la intemperie y propiedades de aislamiento eléctrico. Actualmente, los alcoholes grasos de cadena alta en carbono como C10, C12, C14, C16, C18, etc. están siendo probados para reemplazar el butanol y el octanol, que pueden producir productos plásticos con excelente resistencia al calor, resistencia a la intemperie, y desempeño del aislamiento eléctrico, promoviendo la expansión de las aplicaciones plásticas. Por lo tanto, la aplicación de alcoholes grasos con alto contenido de carbono en la industria de plastificantes plásticos también es bastante prometedora. Además, el alcohol graso es uno de los materiales deantiespumante y antiespumante .
La aplicación de alcoholes grasos naturales en la industria química diaria tiene más ventajas sobre los alcoholes químicos sintéticos. Aunque varios indicadores de calidad física y química son los mismos, la gente sigue prefiriendo los alcoholes naturales, lo que se ha convertido en una tendencia "verde" popular en la actualidad. Por lo tanto, los alcoholes grasos naturales son materias primas ideales en la industria cosmética, como la producción de jabones líquidos y cremosos, pasta de dientes y cremas cosméticas.